Паули

 

Вольфганг ПАУЛИ (Pauli, Wolfgang)

(25.4.1900 - 15.12.1958)

Вольфганг ПАУЛИ - швейцарский физик-теоретик. Родился в Вене 25 апреля 1900 г. Окончил Мюнхенский университет (1921 г.).

Первая работа Паули была посвящена математическим вопросам единой теории гравитации и электромагнетизма и вышла в свет в 1918 г., а в следующем году к Паули, которому тогда было 19 лет, обратились с просьбой написать большую статью по теории относительности для Энциклопедии математических наук (Enzyklopadie der mathematischen Wissenschaften).
В 1921 г. Паули защитил докторскую диссертацию в Мюнхенском университете под руководством А.Зоммерфельда. В 1921-1922 гг. был ассистентом М. Борна на кафедре теоретической физики в Гёттингенском университете. Познакомился с Н. Бором и в 1922-1923 гг. работал в Институте теоретической физики в Копенгагене, помогал в издании работ Бора на немецком языке. В 1923 г.- доцент университета в Гамбурге; с 1928 г. - профессор Высшего технического училища в Цюрихе (кроме 1935-1936 и 1940-1946 гг., когда он работал в Институте фундаментальных исследований в Принстоне).

Когда Паули работал в Гёттингене, Бор занимался поисками закономерностей заполнения электронных оболочек атома, в частности пытался объяснить, почему у атома, находящегося в основном энергетическом состоянии, не все электроны находятся на нижней орбите. Принимая участие в решении этой проблемы, Паули ввел понятие спина и в 1925 г. сформулировал один из важнейших принципов современной теоретической физики, согласно которому две тождественные частицы с полуцелыми спинами не могут находиться в одном состоянии, т.е. не могут обладать одинаковыми значениями всех четырех квантовых чисел (главного, орбитального, магнитного и спинового).
Например, если у двух электронов значения трех квантовых чисел совпадают, то значения четвертого должны быть разными. Отсюда следует, что на одной орбите могут находиться не более двух электронов. За открытие этого принципа Паули в 1945 г. был удостоен Нобелевской премии по физике. Принцип Паули дал объяснение закономерностям, которым подчиняется заполнение электронных оболочек атомов, и послужил исходным пунктом для объяснения тонкой и сверхтонкой структуры атомных спектров.

В 1927 г. Паули опубликовал статью, объясняющую природу парамагнетизма металлов, в которой сделал вывод, что поведение электронов в металлах подчиняется законам, основанным на принципе запрета, а не классическим статистическим законам. Совместно с П. Иорданом и В.Гейзенбергом заложил основы релятивистской квантовой теории поля и предпринял попытку формулировки квантовой электродинамики, введя общую схему квантования полей и заложив тем самым основы систематической теории квантования полей.

При обсуждении особенностей бета-распада Паули выдвинул гипотезу о существовании нейтрино (1930-33 гг.). Паули принадлежат также работы по мезонной теории ядерных сил, ряд обзоров по важнейшим вопросам современной теоретической физики, статьи по истории и философии науки и др.

Паули был удостоен медалей Х. Лоренца (1930 г.), Б. Франклина (1952 г.), М. Планка (1958 г.), Нобелевской премии (1945 г.).

Умер Паули в Цюрихе 15 декабря 1958 г.

 

 

 

 

Макс Планк

 

Макс ПЛАНК (Planck)

(23.IV. 1858 - 4.X. 1947)

Немецкий физик Макс-Карл-Эрнст-Людвиг Планк родился в г. Киле (принадлежавшем тогда Пруссии), в семье профессора гражданского права Иоганна-Юлиуса-Вильгельма фон Планка, профессора гражданского права, и Эммы (в девичестве Патциг) Планк. В детстве мальчик учился играть на фортепьяно и органе, обнаруживая незаурядные музыкальные способности. В 1867 г. семья переехала в Мюнхен, и там Макс поступил в Королевскую Максимилиановскую классическую гимназию, где превосходный преподаватель математики впервые пробудил в нем интерес к естественным и точным наукам. По окончании гимназии в 1874 г. он собирался было изучать классическую филологию, пробовал свои силы в музыкальной композиции, но потом отдал предпочтение физике.
В течение трех лет Макс Планк изучал математику и физику в Мюнхенском и год - в Берлинском университетах. Один из его профессоров в Мюнхене, физик-экспериментатор Филипп фон Жолли, оказался плохим пророком, когда посоветовал молодому Планку избрать другую профессию, так как, по его словам, в физике не осталось ничего принципиально нового, что можно было бы открыть. Эта точка зрения, широко распространенная в то время, возникла под влиянием необычайных успехов, которых ученые в XIX в. достигли в приумножении наших знаний о физических и химических процессах.
В бытность свою в Берлине Планк приобрел более широкий взгляд на физику благодаря публикациям выдающихся физиков Германа фон Гельмгольца и Густава Кирхгофа, а также статьям Рудольфа Клаузиуса. Знакомство с их трудами способствовало тому, что научные интересы Планк надолго сосредоточивались на термодинамике - области физики, в которой на основе небольшого числа фундаментальных законов изучаются явления теплоты, механической энергии и преобразования энергии.
Ученую степень доктора Планк получил в 1879 г., защитив в Мюнхенском университете диссертацию о втором начале термодинамики, утверждающем, что ни один непрерывный самоподдерживающийся процесс не может переносить тепло от более холодного тела к более теплому.
На следующий год Планк написал еще одну работу по термодинамике, которая принесла ему должность младшего ассистента физического факультета Мюнхенскогоуниверситета. В 1885 г. он стал адъюнкт-профессором Кильского университета, что упрочило его независимость, укрепило финансовое положение и предоставило больше времени для научных исследований.
Работы Планка по термодинамике и ее приложениям к физической химии и электрохимии снискали ему международное признание. В 1888 г. он стал адъюнкт-профессором Берлинского университета и директором Института теоретической физики (пост директора был создан специально для него). Полным (действительным) профессором он стал в 1892 г.
С 1896 г. Планк заинтересовался измерениями, производившимися в Государственном физико-техническом институте в Берлине, а также проблемами теплового излучения тел. Любое тело, содержащее тепло, испускает электромагнитное излучение. Если тело достаточно горячее, то это излучение становится видимым. При повышении температуры тело сначала раскаляется докрасна, затем становится оранжево-желтым и, наконец, белым. Излучение испускает смесь частот (в видимом диапазоне частота излучения соответствует цвету). Однако излучение тела зависит не только от температуры, но и до некоторой степени от таких характеристик поверхности, как цвет и структура.
В качестве идеального эталона для измерения и теоретических исследований физики приняли воображаемое абсолютное черное тело. По определению, абсолютно черным называется тело, которое поглощает все падающее на него излучение и ничего не отражает. Излучение, испускаемое абсолютно черным телом, зависит только от его температуры. Хотя такого идеального тела не существует, неким приближением к нему может служить замкнутая оболочка с небольшим отверстием (например, надлежащим образом сконструированная печь, стенки и содержимое которой находятся в равновесии при одной и той же температуре).
Одно из доказательств чернотельных характеристик такой оболочки сводится к следующему. Излучение, падающее на отверстие, попадает в полость и, отражаясь от стенок, частично отражается и частично поглощается. Поскольку вероятность того, что излучение в результате многочисленных отражений выйдет через отверстие наружу, очень мала, оно практически полностью поглощается. Излучение, берущее начало в полости и выходящее из отверстия, принято считать эквивалентным излучению, испускаемому площадкой размером с отверстие на поверхности абсолютно черного тела при температуре полости и оболочки.
Подготавливая собственные исследования, Планк прочитал работу Кирхгофа о свойствах такой оболочки с отверстием. Точное количественное описание наблюдаемого распределения энергии излучения в этом случае получило название проблемы черного тела.
Как показали эксперименты с черным телом, график зависимости энергии (яркости) от частоты или длины волны является характеристической кривой. При низких частотах (больших длинах волн) она прижимается к оси частот, затем на некоторой промежуточной частоте достигает максимума (пик с округлой вершиной), а затем при более высоких частотах (коротких длинах волн) спадает. При повышении температуры кривая сохраняет свою форму, но сдвигается в сторону более высоких частот. Были установлены эмпирические соотношения между температурой и частотой пика на кривой излучения черного тела (закон смещения Вина, названный так в честь Вильгельма Вина) и между температурой и всей излученной энергией (закон Стефана - Больцмана, названный так в честь австрийских физиков Йозефа Стефана и Людвига Больцмана), но никому не удавалось вывести кривую излучения черного тела из основных принципов, известных в то время.
Вину удалось получить полуэмпирическую формулу, которую можно подогнать так, что она хорошо описывает кривую при высоких частотах, но неверно передает ее ход при низких частотах. Джордж Стретт (лорд Рэлей) и английский физик Джеймс Джинс применили принцип равного распределения энергии по частотам колебаний осцилляторов, заключенных в пространстве черного тела, и пришли к другой формуле (формуле Рэлея - Джинса). Она хорошо воспроизводила кривую излучения черного тела при низких частотах, но расходилась с ней на высоких частотах.
Под влиянием теории электромагнитной природы света Джеймса-Клерка Максвелла (опубликованной в 1873 г. и подтвержденной экспериментально Генрихом Герцем в 1887 г.) Планк подошел к проблеме черного тела с точки зрения распределения энергии между элементарными электрическими осцилляторами, физическая форма которых никак не конкретизируется. Хотя на первый взгляд может показаться, что выбранный им метод напоминает вывод Рэлея - Джинса, он отверг некоторые из принятых этими учеными допущений.
В 1900 г., после продолжительных и настойчивых попыток создать теорию, которая удовлетворительно объясняла бы экспериментальные данные, ему удалось вывести формулу, которая, как обнаружили физики-экспериментаторы из Государственного физико-технического института, согласовывалась с результатами измерений с замечательной точностью.
Законы Вина и Стефана - Больцмана также следовали из формулы Планка. Однако для вывода своей формулы ему пришлось ввести радикальное понятие, идущее вразрез со всеми установленными принципами. Энергия планковских осцилляторов изменяется не непрерывно, как следовало бы из традиционной физики, а может принимать только дискретные значения, увеличивающиеся (или уменьшающиеся) конечными шагами. Каждый шаг по энергии равен некоторой постоянной (называемой ныне постоянной Планка), умноженной на частоту. Дискретные порции энергии впоследствии получили название квантов. Введенная Планком гипотеза ознаменовала рождение квантовой теории, совершившей подлинную революцию в физике. Классическая физика в противоположность современной физике ныне означает "физика до Планка".
Планк отнюдь не был революционером, и ни он сам, ни другие физики не сознавали глубокого значения понятия "квант". Для Планк квант был всего лишь средством, позволившим вывести формулу, дающую удовлетворительное согласие с кривой излучения абсолютно черного тела. Он неоднократно пытался достичь согласия в рамках классической традиции, но безуспешно. Вместе с тем он с удовольствием отметил первые успехи квантовой теории, последовавшие почти незамедлительно.
Его новая теория включала в себя, помимо постоянной Планка, и другие фундаментальные величины, такие, как скорость света и число, известное под названием постоянной Больцмана. В 1901 г., опираясь на экспериментальные данные по излучению черного тела, Планк вычислил значение постоянной Больцмана и, используя другую известную информацию, получил число Авогадро (число атомов в одном моле элемента). Исходя из числа Авогадро, он сумел с замечательной точностью найти электрический заряд электрона.
Позиции квантовой теории укрепились в 1905 г., когда Альберт Эйнштейн воспользовался понятием фотона - кванта электромагнитного излучения - для объяснения фотоэлектрического эффекта (испускание электронов поверхностью металла, освещаемой ультрафиолетовым излучением). Эйнштейн предположил, что свет обладает двойственной природой: он может вести себя и как волна (в чем нас убеждает вся предыдущая физика), и как частица (о чем свидетельствует фотоэлектрический эффект). В 1907 г. Эйнштейн еще более упрочил положение квантовой теории, воспользовавшись понятием кванта для объяснения загадочных расхождений между предсказаниями теории и экспериментальными измерениями удельной теплоемкости тел - количества тепла, необходимого для того, чтобы поднять на один градус температуру одной единицы массы твердого тела.
Еще одно подтверждение потенциальной мощи введенной Планк новации поступило в 1913 г. от Нильса Бора, применившего квантовую теорию к строению атома. В модели Бора электроны в атоме могли находиться только на определенных энергетических уровнях, определяемых квантовыми ограничениями. Переход электронов с одного уровня на другой сопровождается выделением разности энергий в виде фотона излучения с частотой, равной энергии фотона, деленной на постоянную Планка. Тем самым получали квантовое объяснение характеристические спектры излучения, испускаемого возбужденными атомами.
В 1919 г. Планк был удостоен Нобелевской премии по физике за 1918 г. "в знак признания его заслуг в деле развития физики благодаря открытию квантов энергии". На церемонии вручения премии прозвучали слова одного из шведских ученых: "Теория излучения Планк - самая яркая из путеводных звезд современного физического исследования, и пройдет, насколько можно судить, еще немало времени, прежде чем иссякнут сокровища, которые были добыты его гением". В Нобелевской лекции, прочитанной в 1920 г., Планк подвел итог своей работы и признал, что "введение кванта еще не привело к созданию подлинной квантовой теории".
В 1920-е годы - годы развития квантовой механики, оснащенной сложным математическим аппаратом, Планку пришлась не по душе новая вероятностная интерпретация теории квантов; подобно Эйнштейну, он пытался примирить предсказания, основанные только на принципе вероятности, с классическими идеями причинности. Однако вероятностный подход устоял. Вклад Планка в современную физику не исчерпывается открытием кванта и постоянной, носящей ныне его имя. Сильное впечатление на него произвела специальная теория относительности Эйнштейна, опубликованная в 1905 г. Полная поддержка, оказанная Планком новой теории, в немалой мере способствовала принятию специальной теории относительности физиками.
К числу других его достижений относится предложенный им вывод уравнения Фоккера - Планка, описывающего поведение системы частиц под действием небольших случайных импульсов (Адриан Фоккер - нидерландский физик, усовершенствовавший метод, впервые использованный Эйнштейном для описания броуновского движения - хаотического зигзагообразного движения мельчайших частиц, взвешенных в жидкости).
В 1928 г. в возрасте семидесяти лет Планк вышел в обязательную формальную отставку, но не порвал связей с Обществом фундаментальных наук кайзера Вильгельма, президентом которого он стал в 1930 г. И на пороге восьмого десятилетия он продолжал исследовательскую деятельность. Личная жизнь Планк была драматична. Его первая жена, урожденная Мария Мерк, с которой он вступил в брак в 1885 г. и которая родила ему двух сыновей и двух дочерей-близнецов, умерла в 1909 г. Двумя годами позже он женился на своей племяннице Марге фон Хесслин, от которой у него также родился сын. Старший сын Планк погиб в первую мировую войну, а в последующие годы обе его дочери умерли при родах. Второй сын от первого брака был казнен в 1944 г. за участие в неудавшемся заговоре против Гитлера.
Как человек сложившихся взглядов и религиозных убеждений, да и просто как справедливый человек, Планк после прихода в 1933 г. Гитлера к власти публично выступал в защиту еврейских ученых, изгнанных со своих постов и вынужденных эмигрировать. На научной конференции он приветствовал Эйнштейна, преданного анафеме нацистами.
Когда Планк, будучи президентом Общества фундаментальных наук кайзера Вильгельма, наносил официальный визит Гитлеру, он воспользовался этим случаем, чтобы попытаться прекратить преследования ученых-евреев. В ответ Гитлер разразился тирадой против евреев вообще. В дальнейшем Планк стал более сдержанным и хранил молчание, хотя нацисты, несомненно, знали о его взглядах.
Как патриот, любящий родину, он мог только молиться о том, чтобы германская нация вновь обрела нормальную жизнь. Он продолжал служить в различных германских ученых обществах в надежде сохранить хоть какую-то малость немецкой науки и просвещения от полного уничтожения. После того как его дом и личная библиотека погибли во время воздушного налета на Берлин, Планк и его жена пытались найти убежище в имении Рогец неподалеку от Магдебурга, где оказались между отступающими немецкими войсками и наступающими силами союзных войск. В конце концов супруги Планк были обнаружены американскими частями и доставлены в безопасный тогда Геттинген.
Скончался Планк в Геттингене 4 октября 1947 г., за шесть месяцев до своего 90-летия. На его могильной плите выбиты только имя и фамилия и численное значение постоянной Планка. Подобно Бору и Эйнштейну, Планк глубоко интересовался философскими проблемами, связанными с причинностью, этикой и свободой воли, и выступал на эти темы в печати и перед профессиональными и непрофессиональными аудиториями. Исполнявший обязанности пастора (но не имевший священнического сана) в Берлине, Планк был глубоко убежден в том, что наука дополняет религию и учит правдивости и уважительности.
Через всю свою жизнь Планк пронес любовь к музыке, вспыхнувшую в нем еще в раннем детстве. Великолепный пианист, он часто играл камерные произведения со своим другом Эйнштейном, пока тот не покинул Германию. Он был также увлеченным альпинистом и почти каждый свой отпуск проводил в Альпах.
Кроме Нобелевской премии, Планк был удостоен медали Копли Лондонского королевского общества (1928) и премии Гёте города Франкфурт-на-Майне (1946).
Германское физическое общество назвало в честь него свою высшую награду медалью Планка, и сам Планк был первым обладателем этой почетной награды. В честь его 80-летия одна из малых планет была названа Планкианой, а после окончания второй мировой войны Общество фундаментальных наук кайзера Вильгельма было переименовано в Общество Макса Планка. Планк состоял членом многих академий наук и научных обществ разных стран.

 

 

 

 

Бруно Понтекорво

 

Бруно Понтекорво

Бруно Максимович Понтекорво (1913-1993) родился в городе Пиза на севере Италии. После окончания Римского университета в 1933 году он стал работать там же в группе известного физика Энрико Ферми.
Понтекорво принимал участие в экспериментах по бомбардировке различных веществ недавно открытыми нейтронами, в обнаружении и дальнейших исследованиях замедления нейтронов и захвата нейтронов атомными ядрами. Эти работы положили начало нейтронной физике.
В 1936-1940 годах Бруно Понтекорво работал в Институте радия во Франции, в 1940 году переехал в США, в 1943-1948 годах жил и работал в Канаде. В 1948-1950 годах он работал в секретном Атомном центре в Харуэлле в Англии. А в 1950 году он приехал в СССР, где стал работать в секретной ядерной лаборатории в Дубне (Московская область).
После создания на базе этой лаборатории в 1956 году международного Объединённого института ядерных исследований стал работать в нём. В 1958 г. он был избран членом-корреспондентом, а в 1964 г. - академиком Академии наук СССР. В 1961 году он стал также профессором Московского университета.
Первые годы жизни в СССР Понтеково был сильно засекреченным человеком. Так, во время его отдыха в Крыму, где он плавал с аквалангом, его всегда сопровождала охрана. Но постепенно завеса секретности спадала. Понтекорво стал участвовать в международных научных конференциях, ездил на родину в Италию.
Живя в СССР, Понтекорво научился хорошо говорить по-русски, хотя и с сильным итальянским акцентом, который был у него до конца жизни.
После отъезда из Рима Понтекорво продолжал заниматься физикой нейтронов. В 1941 году он предложил новый метод разведки месторождений нефти с помощью нейтронов - "нейтронный каротаж".
После открытия пи-мезонов он исследовал их взаимодействия с нуклонами и ядрами, первым изучил образование пи-мезонов при столкновениии нейтронов высоких энергий с протонами и ядрами. Понтекорво провёл также ряд экспериментов по изучению мезоатомов, то есть атомов, в которых вокруг ядра вращаются не только электроны, но и мю-мезон.
Понтекорво много занимался физикой слабых взаимодействий, особенно физикой нейтрино. В 1946 году он предложил использовать для детектирования нейтрино ядерную реакцию:
37Cl + n0 = 37Ar + e--
С помощью именно этой реакции были впервые зарегистрированы нейтрино, испускаемые Солнцем, что ознаменовало возникновение нейтринной астрономии. В 1957 году Понтекорво высказал гипотезу об осцилляциях нейтрино. Эта гипотеза получила экспериментальное подтверждение уже после смерти учёного, в конце 1990-ых годов. Понтекорво исследовал роль нейтрино в процессах эволюции звёзд, что способствовало созданию нейтринной астрофизики.
Понтекорво, как и его учитель Ферми, принадлежал к тем редко встречавшимся в XX веке физикам, которые были одновременно и теоретиками и экспериментаторами.